
Chapter 17

INTERNATIONALISATION TECHNIQUES
IN DEVELOPMENT OF MULTILINGUAL SOFTWARE

Agenor Hofmann-Delbor

1. THE ROLE OF THE PRODUCTION STAGE WITH REGARD
TO MULTILINGUAL SOFTWARE

Back in the old days there were two fully separate categories of products: those
oriented for the local market, and those aimed at the global market. In this age of
globalisation, short supply chains, quick product delivery and constant optimisation
of production processes, it is not difficult to say that most products have become
global. The products that cannot be transformed in order to be sold in different
countries or regions are limited mainly to those based on culture or religion. This
also means that virtually any product can be prepared and customised for global
end users. Only three conditions need to be met:
1. Products need to be translated for local languages
2. Products need to work properly with all planned functionalities
3. Products need to be delivered to local customers

Before going into detail, let us define the terminology used in this chapter.
There are three main terms used:
Globalisation – for the purpose of this chapter let us define globalisation as all the
processes that allow reaching customers or end users in different countries all
around the world, and all the processes that allow manufacturing of products in
various time zones and regions. This is also referred to by the g18n acronym.
Localisation – translation of content in a way that allows meeting the technical and
cultural standards of a specific region or country. This is often referred to as
translation+, showing that it creates a product more adapted to the needs of a local
market, not just speaking the language of the end user. There are many technical

244 A. Hofmann-Delbor

requirements for proper localisation as we will describe later. It is also referred to
by the l18n acronym.
Internationalisation – the process of creating products which can be localised into
several languages. It should always precede the localisation stage. This process
does not assume the author knows other cultural languages. However, it creates
a set of rules and good practices that should be followed if further localisation is
planned. Also referred to by the i10n acronym.
It is worth mentioning that many sources use the term “globalisation” as
a synonym for internationalisation when it comes to software development. For the
purpose of this chapter we will separate these terms.

2. TIME-TO-MARKET AND SOFTWARE DEVELOPMENT

Time-to-market has been the leading marketing and sales strategy used
successfully for years. There are many techniques involved in this process but the
most important goal is to simply win the largest possible part of a specific market.
Again, there are dozens of ways to do it, but the most important two are:
• Creating a product as quickly as possible to reach the market before the

competition,
• Delivering the product simultaneously to several markets.
• The globalisation process has made this approach a common technique used by

software manufacturers.
However, before the time-to-market strategy comes in place, the developers

need to focus on the product. Before we even think about delivery, it is critical to
have “deep understanding of the customer and how the product is likely to be used”
(Kahn, 2004). In terms of software development, this may be a difficult task as the
product is usually completed in the very last stage of production. This is where
internationalisation comes into place with the many concepts that in practice
prepare the product for localisation, and also – for its global presence.

The time-to-market strategy, regardless of its popularity, can also lead to
bottleneck issues. One recent example was the very loud release of the video game
Diablo III by Blizzard Entertainment. Although this is just an entertainment
product, video games are a serious, rapidly growing part of the software
development industry and follow the same localisation process. The release of this
product showed a classic example of how a time-to-market strategy may someti-
mes lead to huge problems. Blizzard released the product simultaneously in more
than 30 countries worldwide and also on two platforms: PC and Mac. Due to it's
outstanding demand and popularity, stocks were quickly cleared. This may have
been a commercial success, and obviously was, but this success also had
a downside. Since the release was, to a degree, synchronised worldwide to enhance
the marketing effect, all the end users started using the product at the same time.

 Internationalisation techniques in development of multilingual software 245

Due to it's licensing policy, to run the program each user needed to login to
Blizzard’s servers. The outcome was similar to a DDOS attack on a large scale
(http://www.diablo3community.com/content.php/19-Diablo-3-Release-Date-
Diablo-iii-Release-Date). It took a few days to solve the problems with connec-
tions. This relatively harmless example shows that the time-to-market strategy does
not end on the release date. It should be closely assigned to the product’s life cycle.

It is also important to mention that the vast amount of the software localisation
projects are not generated by typical software manufacturers. Such projects are
common in other industries, such as in pharmaceuticals, or automotive. Virtually
all electronic devices use some variation of display screens and a user interface,
most of them also include separate documentation, which is usually considered to
be part of the software localisation project.

3. MULTILINGUAL SOFTWARE: PROJECTS AND COSTS

One of the truisms we must use here is that all software projects are all about
numbers – costs, sizes, dates. Any decision made at the preparation stage may and
usually do have a significant impact on the final budget.

To understand the impact of all action taken by software developers, we should
first estimate the size of the market. Software localisation is part of the outsourced
language service. The outsourced language services market in total is estimated to be
worth $33.523 billion in 2012 (Kelly, DePalma & Stewart, 2012). Unfortunately the
majority of localisation projects are confidential, so it is almost impossible to say if
software localisation is 1%, 5% or 10% of the market in total. However, we have
some clues. Without any doubt we know that there are a growing number of
applications, platforms and devices available. A typical large localisation project is
usually worth a couple of million dollars, and just by looking at translation jobs
published officially (ProZ, TranslatorsCafe etc.) we can say that there are thou-sands
of localisation projects out there, including video games (each title is a software
localisation project), devices (mobile phones, applications) and other products. Just
by looking at these assumptions we may expect the software localisation market to
be worth roughly 1 billion US$ (1000 projects * 1 million). If we need to look at
localisation projects globally, then so called Multi-Language Vendors (companies,
which deliver translations into several languages) handle such jobs. If a single
language is worth 100,000 EUR (which means the size of the project is more or less
800,000 words – rather large, yet still an average software project), multiplying that
by the number of languages quickly brings us over six digits. This shows how
underestimated this (1 billion dollar) assumption can be.

http://www.diablo3community.com/content.php/19-Diablo-3-Release-Date-Diablo-iii-Release-Date
http://www.diablo3community.com/content.php/19-Diablo-3-Release-Date-Diablo-iii-Release-Date

246 A. Hofmann-Delbor

4. SOFTWARE LOCALISATION: ERRORS AND TESTING

Localisation errors are typically handled and treated as less critical than
functional errors. However, there are many cases where this could be a false
assumption. In general, each serious error converts into a loss of money. Just by
looking at the United Stated we need to notice that “software defects cost the U.S.
economy almost $60 billion annually” (Vadher, 2010). And that’s not even ¼ of the
global market if we look at their economy.

The testing stage is quite natural for any software development project, albeit it
may not be clear how much difference it makes if errors are avoided during the
production stage instead of being fixed afterwards. Fortunately there is some
reliable information on this matter. A study conducted by the Systems Sciences
Institute at IBM has shown some interesting findings. It seems the cost of fixing an
error found after product release was over six times higher than one uncovered
during the implementation phase, and up to 100 times higher if the error was
identified during the maintenance phase. The graph below shows the comparison.

Fig. 17.1. Relative Costs to Fix Software Defects. Source: IBM Systems Sciences Institute

This shows how important it is to detect and prevent errors in the early stages –
it simply allows outstanding savings. With the budgets described earlier, this gives
manufactures a good reason to pay more attention to this subject. This also shows
how important the testing stage is. The cost of fixing an error after software
release is extremely high – for an error that could be fixed for $1000 during the
design stage, we would need to pay up to $100,000 if detected during the
maintenance phase. It needs to be said that some errors need to be fixed for reasons
that go beyond just typical quality assurance, i.e. legal matters. This means either
the company fixes the error or the product needs to be withdrawn from the market.
If we now go back to the 100x multiplier of the initial costs, this could potentially
be a threat to even large companies and their financial stability.

If we know how important testing and detecting errors is, let us discuss the
efficiency of this process. A study based on average defect detection rates for 6
different JPL projects showed that on average testers found 1 defect every 4 hours

 Internationalisation techniques in development of multilingual software 247

during black box testing (Kelly, Sherif, & Hops, 1992). This means if the software
producer wants to identify just three errors he should allocate at least 12 working
hours for testing. Obviously the tests usually last longer and have several iterations.
This also shows how a limited number of testing hours reflects in the number of
errors found. It needs to be said that localisation testing allows more efficient error
detection rate as the texts are easier to display and check compared to testing
functionalities and dependencies, yet according to the author’s knowledge no
public study has been conducted to confirm this in numbers. However, we cannot
assume fixing localisation errors is any less time consuming for developers than
fixing regular functional errors. It may be the case for minor localisation errors,
but for some of the issues it may actually require more time than to fix other types
of issues or even redesigning the core of the software. Some experiences show the
“average time to find and fix each defect is generally 10 to 20 or more hours"
(Vadher, 2010). We initially considered a project worth 100,000 EUR (800,000
words). Let us assume the project had been translated into 10 languages and for
each language we only found 5 errors. Simple calculations show we need about 50
hours to fix errors for each language, assuming the issues only apply to a specific
language. This makes 500 hours, plus work time required for testing – as we have
previously estimated 4 hours per error, 20 hours multiplied by 10 (number of
languages). The total shows a significant number of 700 hours. If the rate per hour
is 30 EUR this makes almost 30,000 EUR, which is 30% of the initial budget
required to translate the entire project. This example shows that software
localisation is not an additional stage, it is one of the most crucial and financially
demanding stages of the entire production process.

Obviously the time of the localisation tests would depend highly on the quality
of both the code and the translating. Real life examples show many errors are
actually caused by developers taking shortcuts and trying to “make life easier” for
the translators and testers. This usually leads to multiple issues, as it is impossible
for a programmer to know all the linguistic and cultural consequences of each
decision related to extracting or displaying strings in a target language. We will
expand on this topic in the following parts. Let us focus on one of the common
issues – sorting software strings.

All texts used for UI localisation are part of the project resources. Resources are
usually grouped in tables, assigning each string a unique ID. It doesn't make
a difference if the table is stored in a text file (.resx, .properties etc.) or in an SQL
database. The result is basically a list of numbered strings. In general - some of
them are selected for translation, other remain locked. The simplest way to start the
project is to select the strings, extract them (or allow extracting by specialised
tools) and send them to the translation department or vendor. This being said, we
may introduce a most surprising fact – for some reason one of the most common
errors in project preparation is sorting strings alphabetically. It could make
importing the strings back easier in some cases, but in most situations there is no
logical reason for this. This issue affects the entire translation chain, especially the

248 A. Hofmann-Delbor

translator, who sees the random strings from different parts of the software, dialog
boxes etc. We should make it clear – translators and localisation testers live in a
symbiosis. More translation errors naturally extend the time required for testing
and make this phase more difficult. Real-life examples (unfortunately project
names and manufacturers cannot be published) show some interesting conclusions
– testing projects where the strings have initially been sorted alphabetically is 5
times more time consuming than for projects with strings grouped by subject.
Reading between lines, we need to be aware that the difficult and long testing
phase usually also means the linguistic quality of the projects is also poor.

With the popularity of software in general comes the popularity of data formats
that are closely related. Even if the two main programming environments (JAVA
and .NET) require a slightly different approach, both refer to common and
universal data formats. Without any doubt, XML is the universal language for
exchanging data, building information structures and markups. XML is a perfect
example of how all stages of the localisation process influence the final cost of the
project. Even documents as universal and flexible as XML can be built incorrectly
and “inappropriate use of syntactical tools can have a profound effect on
translatability and cost. It may even require complete re-authoring of documents in
order to make them translatable” (Zydroń, 2004).

A very common technique used by developers is substituting variables with
text. One of the ways this could be done in XML documents is by using entities.
For example:

 <translatable_text>Object &name cannot be be found.</translatable_text>

Unfortunately this results in numerous issues, because of the grammar
inflection, word ordering, ordinal followers etc. This will be covered in following
parts. Using entities can also cause problems with XML parsing and using
translation memories (Zydroń, 2004). It is strongly suggested to use tags and IDs
instead of entities. The previous example could be converted into:

<translatable_text>
Object <function id=”517”>calculate</function> cannot be found.
</translatable_text>

Authors of XML documents should also avoid using translatable attributes (eg.
<function id=”517” name=”calculate”>) and learn to properly use the CDATA
section which usually contains escaped special characters and text, which should
not be translated. It is quite common to see the translatable text embedded into this
section, where this should not happen. Strings should not be split into several
sentences. For example:

<para>
 <line>This text should not be</line>
 <line>broken this way – the translated
 text may well be in a different order.</line>
</para>

Example: Incorrect fragmentation of text. Source: Zydroń., 2004.

 Internationalisation techniques in development of multilingual software 249

5. SOFTWARE LOCALISATION: DELAYS AND DEADLINES

Software projects are extremely vulnerable to delays and it is common know-
ledge that the linguistic part (i.e. translation and localisation) is not considered the
key aspect of the process. There are currently two ways to localise the software:
1) translate on-the-fly with regard to AGILE programming. Each translation set is

completed part by part, without actually having the running product. This
enables a very rapid development, but makes the translation part more difficult,
and could lead to lowering the quality of the localized product.

2) localise the product after the coding part has been completed. This approach
gives the translator a chance to see the working products, but it requires a longer
life cycle – therefore it is now a very rare case.
This shows that the localisation team is exposed to a huge pressure to meet

deadlines and deliver the product as soon as possible. The main reason is,
obviously, the increasing cost of the project. It all depends on the task – “the cost of
delay may be less than $1000 per day, but for major projects in large companies in
can exceed $1 million per day in pretax profit” (Kahn, 2004). One of the common
situations in the localisation industry is keeping the 24/7 work cycle by locating
development and translation teams in different time zones globally. This eventually
reflects in the deadlines received by vendors. As we have shown delays could be
really expensive and in many cases the main reason for them is not delivery to the
end user, but rather internal costs, and synchronising tasks performed by staff.

6. INTERNATIONALISATION AND SOFTWARE DEVELOPMENT

The previous paragraphs have shown the role of localisation and the cost depen-
dencies. We also focused on testing. As we said earlier, all the mentioned processes
are a consequence of the decisions made in the early stage, referred to previously
(Fig 17.1) as the designing stage. In fact this process is more complex and allows
avoiding many errors and cutting down costs that would result from ignoring this
process. We have shown the numbers and the importance of preventing errors in
software production. We should now discuss the crucial process which combines
all the experiences and findings – internationalisation.

There are two types of internationalisation: cultural and technical. Both of them
may have different consequences, but ignoring either of them is simply dangerous.
Let us briefly discuss the popular issues.

250 A. Hofmann-Delbor

6.1. Internationalisation: Linguistic issues

One of the most common issues, and definitely the very first piece of
information developers should learn about, is that English language has different
grammar and linguistic rules than other languages. It is simply impossible to apply
all the rules to other languages. However, it is always tempting, because English
allows smooth automation of text flow, inserting entities into text (described in
part 4) without affecting the text meaning and so on. In consequence many
localisation projects cannot be properly localised into a specific language because
it is not possible to keep the same grammar structure and word order in the target
language. Developers tend to use placeholders to insert information generated by
applications (in such cases there is always a risk of breaking the A6 internatio-
nalisation rule described in part 8). This may be a variable name, text, number,
value or other type of information. Usually the created source text looks like the
following sample:
The $variable_name of $other_variable is $mode_name.

The following example is extremely difficult to translate into Slavic languages
with complicated inflection, grammar forms, ordinal followers etc. Even if the
translator succeeds there is still the risk of finding the second most common issue –
string concatenation (violation of rule A7 described in the part 8). Even though it
is forbidden by all large manufacturers, translators still report cases like this. Let us
look at the example below:
$String_2354=John
$String_2355=feeds
$String_2356=his
$String_2357=cat.

Obviously the developer expect a simple operation of concatenating those strings
($String_2354+whitespace+$String_2355+whitespace+$String_2356
+whitespace+$String_2357) to result in a perfectly correct sentence.
Unfortunately in most languages this only results in multiple issues and (as
mentioned in the previous paragraphs) requires additional time for testing and
fixing errors. For example in Polish the string would read “John karmi jego kot”,
which is incorrect and even changes the meaning of the source. Figure 17.2 shows
an example of concatenation in the GUI.

 Internationalisation techniques in development of multilingual software 251

Fig. 17.2. Error caused by text concatenation

The errors mentioned above are just two popular examples that can be avoided
if the development teams follow the internationalisation guidelines we list later in
this chapter. There are many explanations given by developers why the rules were
not applied – usually they reply that the end user group is limited (i.e. to only
professionals), so the internationalisation errors seem less important. There is only
one solution – developers need to follow *all* the internationalisation rules if the
product is supposed to have multicultural support (http://www-01.ibm.com/softwa-
re/globalization/guidelines/).

There are many cultural issues that are also included in the guidelines - they
mainly apply to the author of the text and the localiser. The most important role of
internationalisation is to allow smooth localisation and to create a proper technical
environment for it. However, in some cases an incorrect cultural reference may be
more serious to the end user than any technical error.

7. INTERNATIONALISATION EXAMPLES

Preparing a product for proper and more complex localisation, and therefore
introducing internationalisation techniques, may be an extensive process that
requires several versions of software. The gaming industry shows some interesting
examples.

Figure 17.3 shows three development stages of the FIFA game series by
Electronic Arts. The early versions only allowed subtitles. The next version also
added Polish commentary. The newest version includes all the features introduced
earlier, but goes even further - adding local leagues and players. Actually the
packaging of the software is different in each country, which means almost each
aspect of the product allows internationalisation. In this case the cover includes
a local football player, Lewandowski.

252 A. Hofmann-Delbor

\

Fig. 17.3. Several stages of internationalisation in FIFA game series by Electronic Arts.
Source: Google

Fig. 17.4. Another example of game packaging internationalisation. Source: Google

It seems the producer (Electronic Arts) is also using this packaging
internationalisation technique in other products. Figure 17.4 shows a cover of
a military shooter game, which includes a well-known Polish special forces team
called GROM. This is one of the many examples of how internationalisation brings
the product closer to the end user. There is no doubt this encourages local
customers to choose such a product.

One of the most important rules of internationalisation applies to text length.
The example below shows a dialog box that would not be suitable in a case where
the target language is significantly longer than the source. Internationalisation
techniques help to properly redesign the dialog box.

 Internationalisation techniques in development of multilingual software 253

Fig. 17.5. Example of dialog box internationalisation. Based on lecture by Goldschmidt,
& Zerfaß , 2010, Localization World 2010

8. INTERNATIONALISATION GUIDELINES

There are over 80 technical internationalisation rules that developers need to
follow to create a product that can be localised into several languages. One of the
most important general rules is “always separate text from code and move it to the
project resources” (Sachse, 2012). This allows smooth localisation using software
localisation tools. Hardcoded text (i.e. MessageBox.(“Sample text to be
localised”) in most cases cannot be extracted in a safe way. In the .NET
environment this would require moving the text to .res/resx files, while in Java, text
would need to be moved into .properties files (Property Resource Bundles). The
biggest concern with strings embedded in the code is that all such issues will not be
visible to the translator and can usually be detected only during the localisation
testing stage, which is – as was said earlier – a very late and expensive way of
fixing errors.

Another general rule is aimed at text authors/technical writers. To allow smooth
translation resources should be created with an international audience in mind
(http://www-01.ibm.com/software/globalization/guidelines/). Obviously the software
needs to support the proper encoding (usually Unicode), fonts, correct direction and
so on. Last but not least - all cultural assumptions need to be removed.

Please find below the complete list of technical rules specified in the
Globalisation Design Guide by IBM (http://www-01.ibm.com/software/globa-
lization/guidelines/):

254 A. Hofmann-Delbor

• A1-1 Package MRI modules separately from the executable code.
• A1-2 Design applications so that they can be easily translated.
• A2 Consider Presentation Control Information (PCI) as part of the MRI and

make the PCI available to the translator during the translation process.
• A2-1 Select data formats that are supported by your translation system.
• A3 Provide for effective presentation of MRI after expansion that results from

translation.
• A4 Ensure that functions that depend on the location of user interface elements

are not inhibited by display position changes caused by MRI expansion, or by
mirroring of presentation for bidi languages.

• A5 Provide translators with a way of tracking MRI entities (such as messages
and dialogs).

• A5-1 Have a mechanism to identify changes in the application or Web site and
route that information into a translation process.

• A6 Permit variables that are substituted into text strings to assume any location
and order.

• A7 Ensure that messages and other MRI are complete sentences; do not
construct sentences from parts of sentences; do not construct words from word
fragments.

• A8 Icons and clip art are to be treated as MRI and must, therefore, follow the
rules for MRI (such as isolation, packaging and tracking) and be translatable.

• A8-1 Avoid text in icons.
• A8-2 Avoid humour, puns, slang, and special, mythological, and religious

symbols in icons.
• A8-3 Avoid hand gestures or body positions in icons.
• A8-4 Allow for changes in icon colours because the meaning of a colour may

differ between countries and regions.
• A8-5 Avoid implicit assumptions or expressions of reading and writing direction.
• A8-6 Suppress nonessential details in icons.
• A8-7 Avoid culturally specific metaphors in icons.
• A8-8 Use internationally recognized symbols in icons.
• A8-9 Avoid the use of national flags in icons.
• A9 Translatability of inputs such as commands, keywords, and responses is

a must if the following conditions are met: they do not have a GUI equivalent,
are not in common use in the industry and they can be found in the English
dictionary.

• A10 Clearly identify and explain all trademark terms; verify all trademark
claims and styles of acknowledgement with your intellectual property
department.

• A11 When formatting text, be aware of punctuation marks or characters that
cannot be placed at the beginning or end of a line during the line-breaking
process.

 Internationalisation techniques in development of multilingual software 255

• A12 Messages and data that go into customer log files must be translated while
those that go into internal trace files must not be translated.

• A13 Mnemonics and accelerators are MRI and must therefore be translatable.
• A13-1 Consult and follow the IBM translation best practices when selecting

symbols or letters for use in mnemonics or accelerators.
• A13-2 Do not use the AltGr key as the beginning of a mnemonic or accelerator
• B1 Write user interface information with an international audience in mind (for

ease of translation into other languages, and for ease of understanding by non-
English audiences).

• B1-1 Do not omit prepositions or articles from sentences.
• B1-2 Avoid noun strings.
• B1-3 Write in the active voice using the present tense.
• B1-4 Avoid using words in incorrect grammatical categories, such as using

a noun or an adjective as a verb.
• B1-5 Avoid ambiguous pronoun references.
• B1-6 Use simple and clear coordination.
• B1-7 Ensure the elements of your sentences are parallel.
• B1-8 Filter out typographical errors.
• B1-9 Use correct terminology.
• B1-10 Be consistent with terminology.
• B1-11 Avoid referring to culture-specific standards.
• B1-12 Avoid using names that have meaning in your country or region only.
• B1-13 Avoid abbreviations, acronyms and special symbols: they cannot be

translated.
• B1-14 Keep sentences as short and simple as possible.
• B1-15 Avoid the use of slang, jargon, humour, sarcasm, colloquialism,

metaphor and informal everyday language.
• B1-16 Be concise.
• B1-17 Do not ask negatively phrased questions.
• B1-18 Do not use a slash to form the construction and/or; do not use a slash to

mean and or or.
• B1-19 Avoid forming plurals by adding “(s)” to indicate either singular or

plural form. Include both forms if necessary.
• B1-20 Refer to the symbol < ' > (apostrophe) as an apostrophe and the symbol <

’ > (single quote) as a single quotation mark.
• B1-21 Clearly identify non-cosmetic changes; avoid cosmetic changes that

affect translation already done.
• C1 Allow the Selection of Calendar and Calendar Format
• C2 Allow the Selection of Date and Time Format
• C3 Allow the Selection of Time zone
• C4 Allow the Selection of Paper Size
• C5 Allow the Selection of Cardinal Number Shape

256 A. Hofmann-Delbor

• C6 Allow the Selection of Numeric Value Format
• C7 Allow the Selection of Monetary Amount Format
• C8 Allow the Selection of Mathematical Format
• C9 Allow the Selection of Measurement System
• C10 Allow the Selection of Sentence Spacing and Punctuation
• C11 Allow the Selection of First Day of Week
• C12 Allow the Customization of Address Format
• C13 Allow the Customization of Telephone Number Format
• C14 Allow the Customization of Name Format
• C15 Ensure conformance with Government Regulations
• C16 Allow the Selection of User-Interface Language
• D1 – Isolating Culture-sensitive and Language-sensitive Parts
• D2 – Ensuring the Compatibility of Language and Culture Parts
• D3 – Structuring Services for Full Support
• D4 – Providing for Language Exits
• D5 – Selecting Development Tools
• E1 – Counting Graphic Keys
• E2 – Controlling The Operating Modes
• E3 – Switching Graphic Groups
• E4 – Supporting Capital Lock or Level 2 Lock Function
• E5 – Implementing Capital Lock Function
• E6 – Defining a Combining or Repeating Key
• E7 – Positioning of Graphics
• E8 – Providing for Flexible Character Generator
• E9 – Providing Consistent Presentation Intensity
• E10 – Compensating for Printer Duty Cycle Limitations
• E11 – Accommodating Different Paper Sizes
• F1 – Coding Graphic Characters
• F2 – Using Graphic Characters
• F3 – Supporting Graphic Character Sets
• F4 – Accessing Graphic Characters
• F5 – Validating Graphic Characters
• F6 – Respecting Reserved Code Points
• F7 – Redefining Graphic Character Meaning
• F8 – Avoiding Unassigned Code Points
• F9 – Identify Encoding
• G1 – Allowing Coexistence of MBCS and SBCS Data
• G2 – Recognizing Multibyte Characters
• G3 – Manipulating MBCS Data Stream
• G4 – Converting Multibyte Characters
• G5 – Buffer Space Considerations
• G6 – Switching Character Interpretation

 Internationalisation techniques in development of multilingual software 257

• G7 – Adding New Characters
• H1 – Entering Bidirectional Text
• H2 – Respecting the Bidirectional Attributes
• H3 – Mirroring of Graphic User Interface Elements
• H4 – Isolating Artwork Orientation and Text Orientation

All large software manufacturers have their own internationalisation guides, so

it is strongly recommended to select the one most relevant to the development
framework used in the specific project.

The most popular error detected during testing is truncated text. One of the
reasons for this is not applying internationalisation rules related to the length of
text. For many language pairs we often see text expansion, meaning that the target
string (or the content of text boxes) can be up to 20-30% longer (Zerfaß, 2010)
once the translation is completed. In rare language variants we may see text
contraction, but in general we should always expect that our source text may need
to be significantly longer in the target language version. Fortunately many
programming frameworks now support autoresizing of buttons and dialog boxes.
Figure 17.6 shows and example of truncated strings:

Fig. 17.6. Example of truncated text

Also one of the often reported errors is related to date, calendar and
measurements format that cannot be changed to the proper local appearance.
Figure 17.7 shows an example of incorrect calendar format for Polish.

Correct form: 20 lipca 2012 or 2012-07-20

Fig. 17.7. Example of calendar issues

258 A. Hofmann-Delbor

Other common error is also enforcing a calendar with Monday being the first
day of the week. In general - not following any of the rules mentioned in the list
above leads to errors in translated products.

It is worth mentioning that most of the described techniques can also be used in
products other than software. For example a car manufacturer would use
internationalisation techniques to allow assembling the driving wheel on both sides
and localising manuals to several languages. This applies to many domains, i.e.
power connectors are the most commonly internationalised hardware element. All
social media portals are also "i18n-ready" by design.

Please note this paper does not refer directly to the very important issue of the
source text quality. There are many non-technical issues, which may occur when
the quality of the source document is low, usually when it is not written by native
speakers.

9. CONCLUSION

Internationalisation techniques allow a significant decrease of the error rate in
software projects and smooth product localisation: crucial elements in reaching
multilingual customers worldwide. Many examples show the consequences of
incorrect product design and the impact on localisation - and therefore on product
sales on the specific market.

Yet, convincing companies to focus on internationalisation before and during the
development phase is still work in progress. Once the decision to introduce a full
internationalisation process has been made, it is important to refer to a specific
internationalisation guide with all rules explained in details. Please note only a small
number of rules and examples were explained in this chapter.

REFERENCES

[1] Bartnicka M. & Gacka R., (2012), "Software internationalization in IBM” (in
Polish), Lecture at Silesian Univeristy.

[2] Deitsch A. & Czarnecki D., (2001), "JAVA Internationalization”, O’Reilly.
[3] Esselink B., (2000), "A Practical Guide for Localization” (2nd Edition), John

Benjamin Pub. Co.
[4] Eve P., (2012), "Multilingual e-commerce: US and UK trends”, http://econsultan-

cy.com/uk/blog/10130-multilingual-e-commerce-us-and-uk-trends.
[5] Goldschmidt D., Zerfaß A., 2010, "Best Practices Areas in Internationali-

zation/Localization”, Localization World 2010 Conference Materials.
[6] Hall B., (2007), "Globalization Handbook For The Microsoft .NET Platfrom”,

Multilingual Press.
[7] Kahn K. B., (2004), "The PDMA Handbook of New Product Development”, Second

Edition, John Wiley & Sons, 2004. Chapter 12, pp. 173-187.

 Internationalisation techniques in development of multilingual software 259

[8] Kano N, (2002),"Developing International Software by Dr. International”, Microsoft
Press.

[9] Kaplan M. S., (2000), "Internationalization with Visual Basic”, Sams.
[10] Kelly J. C., Sherif, J.S. & Hops J., (1992), "An analysis of defect densities found

during software inspections",Journal of Systems and Software archive, Volume 17
Issue 2, Pages 111 - 117, Elsevier Science Inc. New York, NY, USA

[11] Kelly N., DePalma D. A. & Stewart R. G., (2012),"The Language Services
Market”, page 2.

[12] IBM, (2011), "Globalisation Design Guide, http://www-01.ibm.com/soft-
ware/globalization/guidelines/

[13] IBM, (2011), "Multicultural Support Reference Guide”, http://pic.dhe.ibm.com/info-
center/aix/v7r1/topic/com.ibm.aix.nls/doc/nlsgdrf/nlsgdrf_pdf.pdf.

[14] IBM, (2012), "Bidirectional Support Guide”, http://publib.boulder.ibm.com/info-
center/hatshelp/v75/index.jsp?topic=/com.ibm.hats.doc/doc/ugbidi.htm.

[15] Savourel Y., (2001), "XML Internationalization and Localization”, Sams, India-
napolis.

[16] Sachse F., (2012), "How to deliver software for global audiences: An introduction to
software internationalization”, Webinar recording by SDL.

[17] Symmonds N., (2002), "Internationalization and Localization Using Microsoft
.NET”, Apress.

[18] Vadher P., (2010), http://www.softwaretestingdiary.com/2010/08/software-testing-
and-quality-assurance.html.

[19] Zydroń A., (2004), "Coping with Babel: How to Localize XML”, The Globalization
Insider, Volume XIII, Issue 4.2.

The author would like thank Ms. Marta Bartnicka for her help in obtaining the valuable

data used in this publication and sharing her comments.

All trademarks used in thischapter are the property of their respective owners.

260 A. Hofmann-Delbor

	02-17-243-260a
	Agenor Hofmann-Delbor
	6.1. Internationalisation: Linguistic issues
	7. INTERNATIONALISATION EXAMPLES

